試卷名稱:114年 - 114-2 AI 應用規劃師-中級能力鑑定公告試題_第三科:機器學習技術與應用#136329
年份:114年
科目:iPAS◆AI應用規劃師◆中級
2. 在建立迴歸或分類模型時,若希望避免模型過度擬合(Overfitting),可透過加入正則化項以限制模型的複雜度。其中,L1 正則化(Lasso)的主要效果為何?
(A)增加模型參數的數量,以提升表現靈活度;
(B)強化梯度穩定性,避免參數更新過度震盪;
(C)產生稀疏模型(Sparse Model),使部分參數權重收斂為零;
(D)提高學習率(Learning Rate),加速模型收斂速度